Donoho-Logan large sieve principles for modulation and polyanalytic Fock spaces
نویسندگان
چکیده
We obtain estimates for the Lp-norm of short-time Fourier transform (STFT) functions in modulation spaces, providing information about concentration on a given subset R2, leading to deterministic guarantees perfect reconstruction using convex optimization methods. More precisely, we large sieve inequalities Donoho-Logan type, but instead localizing signals regions T×W time-frequency plane intertwine time and frequency, localize representation terms sets Δ with arbitrary geometry. At technical level, since there is no proper analogue Beurling's extremal function STFT setting, introduce new method, which rests combination an argument similar Schur's test extension Seip's local reproducing formula general Hermite windows. When windows are functions, formulas polyanalytic Fock spaces lead explicit constant and, as byproduct, f∈L2(R) from its values discs.
منابع مشابه
Sampling and Interpolation in Bargmann-fock Spaces of Polyanalytic Functions
We give a complete characterization of all lattice sampling and interpolating sequences in the Fock space of polyanalytic functions (polyFock spaces), displaying a ”Nyquist rate” which increases with the degree of polyanaliticity. This is done introducing a unitary mapping between vector valued Hilbert spaces and poly-Fock spaces. This mapping extends Bargmann ́s theory to polyanalytic spaces. T...
متن کاملwavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
Uncertainty Principles for the Fock Space
We prove several versions of the uncertainty principle for the Fock space F 2 in the complex plane. In particular, for any unit vector f in F , we show that dist (f ′ + zf, [f ]) dist (f ′ − zf, [f ]) ≥ 1, where [f ] = Cf is the one-dimensional subspace spanned by f . We also determine exactly when equality occurs above.
متن کاملMaximal Zero Sequences for Fock Spaces
A sequence Z in the complex plane C is called a zero sequence for the Fock space F p α if there exists a function f ∈ F p α , not identically zero, such that Z is the zero set of f , counting multiplicities. We show that there exist zero sequences Z for F p α with the following properties: (1) For any a ∈ C the sequence Z ∪ {a} is no longer a zero sequence for F p α; (2) the space IZ consisting...
متن کاملCuriosities on Free Fock Spaces
We consider some curious aspects of single-species free Fock spaces, such as novel bosonization and fermionization formulae and relations to various physical properties of bosonic particles. We comment on generalizations of these properties to physically more interesting many-species free Fock spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin Des Sciences Mathematiques
سال: 2021
ISSN: ['0007-4497', '1952-4773']
DOI: https://doi.org/10.1016/j.bulsci.2021.103032